If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+x2=38^2
We move all terms to the left:
2x^2+x2-(38^2)=0
We add all the numbers together, and all the variables
3x^2-1444=0
a = 3; b = 0; c = -1444;
Δ = b2-4ac
Δ = 02-4·3·(-1444)
Δ = 17328
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{17328}=\sqrt{5776*3}=\sqrt{5776}*\sqrt{3}=76\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-76\sqrt{3}}{2*3}=\frac{0-76\sqrt{3}}{6} =-\frac{76\sqrt{3}}{6} =-\frac{38\sqrt{3}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+76\sqrt{3}}{2*3}=\frac{0+76\sqrt{3}}{6} =\frac{76\sqrt{3}}{6} =\frac{38\sqrt{3}}{3} $
| 4(3x+5)=5(x+5)+7x | | -2/3(4x-5)=6x | | 35=-8y+4 | | -5(6y-2)-y=-3(y-3) | | 28y=1 | | 7m^2-2m=5 | | t-6-5=8 | | -1/2x+4=-8 | | 3x+2x+5=5x+5 | | -17+38=-3(x+7) | | 3x–8+5x=32 | | -3/7w-1/2=-4/3 | | 13-8p=-11 | | 4z+6=-12 | | 3/8n-7=-13 | | (8x-4)+4(5-x)=0 | | 2(u-3)= | | 7(7-2y)= | | 4z+6=3z+12 | | 7(7−2y)= | | 3(-5+2b)= | | 3+6=-3(4x-3) | | 5(x+3)=3x+14 | | 9(-6+s)= | | -4(-5+f)= | | -3(3-5j)= | | 11r+2/5=-43.6 | | 3(2x+9)=-16+37 | | -3(3−5j)= | | (5f+1)(4)= | | -36.6=3-2.2m | | 8/b+-11=-9 |